

GPU Accelerated Cloud-Native Geospatial Tom Augspurger | CNG 2025 | May, 2025

• GPUs are fast

- Useful for analytical, simulation, ML/DL, ... workloads
- The cloud and CUDA / RAPIDS makes starting much easier
- Using GPUs optimally takes care
- Some heuristics to identify and optimize workloads that can benefit from GPU acceleration • Figure out *together* where GPU-acceleration can be helpful

Themes

- The cloud provides programmable
 - Compute
 - Storage
 - Networking
- Storage is separate from compute.
 - This affects many things!
- GPUs provide accelerated compute

Definitions

- \$ coiled batch run \ python job.py
- \$ coiled batch run \
 - --n-tasks 100 \
 - python job.py
- \$ coiled batch run \
 - --n-tasks 100 \

 - python job.py

```
--vm-type Standard_ND96asr_A100_v4 \
```


Demo

Accelerated Computing Swim Lanes RAPIDS makes accelerated computing more seamless while enabling specialization for maximum performance

Zero Code Change: Acceleration Plugins (no-code change)

GPU Python Libraries (GPU Python code)

RAPIDS core libraries (cuDF, cuML, cuGraph, cuVS), RMM, CuPy, Numba, OpenAl Triton ...

Python/CUDA libraries (Hybrid Python / CUDA code)

CuPy RawKernels, Numba CUDA, Cython wrappers for CUDA ...

C++/CUDA high level (High-level C++/CUDA code)

RAFT, CCCL: Thrust, CUB ...

CUDA Toolkit (C++/CUDA code and kernels)

cuBLAS, cuDNN, cuSolver, cuSPARSE, ...

- Load inputs
- Compute
- Store result

Typical Workload

- Load inputs: timeseries of imagery over some
- Compute: Align pixels, median over time
- Store result: single cloud-free mosaic

Typical Workload: Cloud-free Mosaic

- Load inputs: imagery / labels / forcings / ...
- Compute: Update model weights
- Store result: Store model weights

Typical Workload: Model training

NeuralGCM (Kochkov et. al. 2023)

- Load inputs: Model weights, initial conditions
- Compute: Predict next *N* time steps
- Store result: Store / serve forecasts

Typical Workload: Forecast

FourCastNet (Pathak et. al. 2022)

- Load inputs: *Mostly* network, but some compute
- Compute: Mostly compute, with caveats
- Store result: *Mostly* network, but some compute

Where's time spent?

I/O-bound

Load Data

Workflow timeline: I/O-bound

Store Data

Compute bound

Load Data

Workflow timeline: Compute-bound

Compute

time

Store Data

I/O-bound

Load Data

I/O-bound

Load Data

Accelerated Workflow: I/O-bound

Accelerated Workflow: Compute-bound

Compute bound

Load Data

Compute bound

time

- GPUs are part of a larger system
- Use your network, CPUs, RAM, GPU interconnects, efficiently

Compute Accelerator

Pipelining

Bad pipelining

Pipelining I/O thread _____ GPU _____ I/O thread

Good pipelining

- Minimize the amount of transfers
- Maximize the compute operations per byte read / stored

Caveat: Memory Bandwidth

Copying data from host memory to device memory is relative slow

Memory Hierarchy with **Bandwidth & Memory Size**

- Profile your workloads
- Focus on compute bound problems
- Use pipelining to avoid I/O bottleneck
- Start with <u>RAPIDS</u> / cupy / torch / jax / Earth2 / Zarr / ...
- Please reach out if you have issues or use-cases

Summary

Thanks!

<u>toaugspurger@nvidia.com</u>|@TomAugspurger

Smooth Installation and Packaging Meeting a wide array of needs with easy to install and use distribution methods

Standard binary distributions

- One line installation methods
 - Conda:
 - With conda-forge CUDA packages, and rapidsai RAPIDS packages
 - *Pip* installation
 - Custom index to support all RAPIDS ecosystem.

CUDA Compatibility

- One package works across major CUDA version
 - True for all distribution methods
- CUDA Toolkit available entirely on conda-forge
 - No need for system CUDA Toolkit, just driver

- Thin **CUDA** containers
- **RAPIDS** and other **application-level** containers
- **Devcontainers** for developers wanting to contribute
- Specialized containers, for example Vector Search benchmarks
- NVIDIA AI Enterprise

 Adds capability of running GPU code in latest GPU architectures

Containers

JIT compilation

Available for writing CUDA code at runtime

Shared Node

Scale out AI/ML APIs and model serving with NVIDIA Triton Inference Server and the Forest Inference Library

RAPIDS Deployment Models Scales from sharing GPUs to leveraging many GPUs at once

Single Node

Scale up interactive data science sessions with NVIDIA accelerated tools like cudf.pandas

Multi Node

Scale out processing and training by leveraging GPU acceleration in distributed frameworks like Dask and Spark

RAPIDS on Kubernetes Unified Cloud Deployments

Reduce cost

Reduce the amount of time you need to run servers. Beneficial for reducing cloud costs.

Performance boost

Get work done faster. May help give a competitive advantage or reduce pressure on SLAs.

Reduce context switching

Reduce time people need to wait for calculations to complete which helps avoid switching to a different task.

RAPIDS runs your workloads faster How do you want to spend those gains?

Run more workloads for the same time/cost. Process things that were not possible before.

Reduce power needed to perform the same calculation. Using less power produces less CO2.

Acceleration could allow for more iterations or to process more data leading to improved model accuracy

Do more work

Environment impact

Improve accuracy

Overview

- platform
- ML)

Data science needs accelerated computing

NVIDIA RAPIDS is an end-to-end data science

• The RAPIDS cuDF Python package provides a pandas-like API that accelerates common analytics workloads

 NVIDIA is committed to meeting data scientists and engineers where they are (pandas, NetworkX, Spark

 cudf.pandas provides zero-code-change acceleration for existing pandas scripts / notebooks

 Accelerated computing is powering the next wave of Al applications such as LLMs, large scale graphs

